Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.

Bdle fragte in Science & MathematicsPhysics · vor 1 Jahrzehnt

Calculate the speed of the DISK at the BOTTOM of the inclined plane?

A disk and a hoop of the same mass and radius are released at the same time at the top of an inclined plane. The height of the incline is 0.66 m .

B.) Calculate the speed of the HOOP at the BOTTOM of the inclined plane?

Can someone work this problem out step by step so that I can better understand it. Thanks!

2 Antworten

Relevanz
  • vor 1 Jahrzehnt
    Beste Antwort

    GPE is converted to KE in this process.

    Two modes of storage of kinetic energy exist: translational and rotational.

    KEtrans = 1/2*m*v^2

    KErot = 1/2*I*omega^2

    no-slip condition:

    v = omega/r

    Thus:

    KErot = 1/2*I*v^2/r^2

    Thus:

    KEnet = KEtrans + KErot

    KEnet = 1/2*m*(1 + I/(m*r^2))*v^2

    By conservation of energy:

    GPEinit = KEnet

    Thus:

    m*g*h = 1/2*m*(1 + I/(m*r^2))*v^2

    Cancel m:

    g*h = 1/2*(1 + I/(m*r^2))*v^2

    Solve for v:

    v = sqrt(2*g*h/(I/(m*r^2) + 1))

    For a hoop, I = m*r^2

    For a disc, I = 1/2*r^2

    Substitute and simplify:

    v_hoop = sqrt(g*h)

    v_disc = sqrt(2*g*h/3)

    Data:

    h:=0.66 m; g:=9.8 N/kg;

    Results:

    v_hoop = 2.543 meters/second

    v_disc = 2.077 meters/second

  • vor 1 Jahrzehnt

    You can find the potential energy of the hoop as m*g*h which would be the magnitude of the mechanical energy. Therefore if you add the kinetic energy and the rotational kinetic energy at the bottom of the ramp they should equal the potential energy at the top. You then get this equation:

    mgh = 0.5mv^2 + 0.5Iw^2 where I = moment of Inertia ; w = angular velocity

    then by plugging in I = mr^2 ; w = v/r and thusly cancelling out the masses we get:

    gh = 0.5(v^2 +rv)

    then we put this in quadratic form to get:

    0.5(v^2) + 0.5r(v) - 6.4746 = 0 where gh = .66*9.81 = 6.4746

    from here you can plug in your value for r and then treat v as the variable in the quadratic formula and find a value for it either using your calculator or the quadratic equation

    *This answer is assuming you've figured out r somewhere else. I don't know how you would solve it without knowing r*

Haben Sie noch Fragen? Jetzt beantworten lassen.