Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.
why does the integral of 1/x² dx from -1 to 1 equal -1?
Or is this even correct?
further: How to I integrate functions that aren't continous?
2 Antworten
- fernando_007Lv 6vor 8 JahrenBeste Antwort
Let me first answer your second question.
You integrate between your limits and discontinuities and
sum up those integrals.
For example your function has discontinuity at x = 0.
Hence you will have two integrals one from -1 to 0
and second from 0 to 1, Therefore your first question is:
limit(when e -> 0)
integral(from -1 to -e)[dx/x^2] + integral(from e to 1)[dx/x^2] =
(from -1 to -e)[-1/x] + (from +e to 1)[-1/x] = 1/e + 1 + (-1 + 1/e) = 2/e -> inf.
Therefore the -1 result is not correct.
- vor 8 Jahren
It doesn't.
An integral can only be applied over a domain if the function is continuous along that domain.
The best way to integrate 1/x^2 is to first notice that 1/x^2 is an even function (f(-x) = f(x))
So if you're integrating from -a to a, it'd be just as easy to integrate from 0 to a and then double that
int(dx / x^2 , x = 0 , x = 1) =>
(-1/x) {0 , 1} =>
-1/1 - (-1/0) =>
1/0 - 1
Now, as x approaches 0 from the right, 1/x goes to infinity
inf - 1
inf
Multiply it by 2
infinity