Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.

Integral identity?

Here's one inspired by a question of Eulercrosser:

Evaluate

int [exp(-ax)-exp(-bx)]/x dx

where a,b>0 and the integral goes from 0 to infinity.

Update:

It isn't an answer unless it is justified.

Update 2:

fatal_flad_death has the correct answer. Now show why it is correct.

4 Antworten

Relevanz
  • vor 2 Jahrzehnten
    Beste Antwort

    Yes.

    Switching a,b only changes the sign, so let's suppose b < a without loss of generality. Write the integrand:

    exp(-ax)[1-exp(a-b)x]/x

    = -exp(-ax)[(a-b) + (a-b)^2x/2! + (a-b)^3x^2/3! + ...]

    Since \int exp(-ax)x^n dx= n!/a^(n+1) , the integral is:

    -[(a-b)/a + (a-b)^2/2a^2 + (a-b)^3/3a^3 + ...]

    Since 0 < (a-b)/a <= 1 this the the series for the logarithm:

    ln(1-(a-b)/a) = ln(b) - ln(a)

    *************

    Another way to see it, more informally:

    W(a) = \int (epsilon-->oo) exp(-ax)/x dx

    dW(a)/da = -exp(-a epsilon)/a ~ -1/a + epsilon +...

    ==>

    W(a) + Constant - ln(a)

    ==>

    W(a) - W(b) = ln(b) - ln(a)

  • vor 4 Jahren

    hi, is or become this considered one of YOUR homework assignments? you're a competent one for symantics of the questions too, and as you probably did no longer ask to instruct it, yet a thank you to instruct it, right this is an answer, and doubtless a sprint for others. word that ? (x^a -a million)/log(x) dx = ?(x^a)/log(x) dx - ?(a million/log(x)) dx permit y=log(x) ? x = e^y , dx = e^y dy then ? = ? (e^(ay))/y * e^y dy - ?(a million/log(x)) dx = ? (e^[(a+a million)y])/y dy - ?(a million/log(x)) dx = Ei[(a+a million)y] - Li[x] =Ei[(a+a million)log(x)] - Li[x] use Li[z]=Ei[log(z)], and circulate from there... Eulercrosser, now circulate verify my answer to: Why is the diff of two numbers made by potential of a diverse mixtures of the comparable digits, equivalent to a diverse of 9?

  • vor 2 Jahrzehnten

    I believe that it is ln(b)-ln(a)

  • Anonym
    vor 2 Jahrzehnten

    Is it (b-a)

Haben Sie noch Fragen? Jetzt beantworten lassen.