Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.

Question about a double tangent to a curve.?

What is the equation of the tangent line to the curve x^4 + xy + y^2 + x = 7 that is tangent to the curve at a point in the first quadrant and is also tangent to the curve at a point in the second quadrant?

[this question is motivated by a question of Andrew]

2 Antworten

Relevanz
  • Indica
    Lv 7
    vor 6 Jahren
    Beste Antwort

    y=mx+c meets curve when x⁴+x(mx+c)+(mx+c)²+x = 7

    i.e. when f(x) = x⁴ + mx²(1+m) + x(1+c+2cm) + (c²−7) = 0

    If line is a double tangent then this equation must have two double roots in x

    Hence f(x) = (x−a)²(x−b)² = x⁴ + mx²(1+m) + x(1+c+2cm) + (c²−7) for some a,b

    Expanding LHS to x⁴ − 2x³(a+b) + x²(a²+4ab+b²) – 2abx(a+b) + a²b²

    And comparing coefficients gives

    a+b = 0 … (i)

    a²+4ab+b² = m(1+m) … (ii)

    −2ab(a+b) = 1+c+2cm … (iii)

    a²b² = c²−7 … (iv)

    Write (ii) as (a+b)²+2ab = m(1+m) and use (i) to get ab = m(1+m)/2

    Using (i) in (iii) gives 1+c+2cm = 0 so c = −1(1+2m)

    Put these results in (iv) : m²(1+m)²/4 = 1/(1+2m)² − 7

    → 4m⁶ + 12m⁵ + 13m⁴ + 6m³ + 113m² + 112m + 24 = 0

    This has two real roots m ≈ −0.688827382494622, −0.311172617505378

    First gives required tangent y = 2.647921045107112679 − 0.6888273824946220000x

  • xyzzy
    Lv 7
    vor 6 Jahren

    I don't think that such a solution exists...

    Q1 and Q2... y> 0

    y = sqrt(7-x^4+1/4 x^2-x)- 1/2 x

    This curve is nearly a line.

    certainly there are values for y where

    y = -sqrt(7-x^4+1/4 x^2-x)- 1/2 x, but y is not in Q1 or Q2...

Haben Sie noch Fragen? Jetzt beantworten lassen.