Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.

Can you find a more golden Pythagorean triangle?

Pythagorean triangle: a right triangle with integer side lengths.

Golden triangle: a right triangle whose legs are in the golden ratio.

Golden ratio: (1+√5)/2 : 1

There is no golden Pythagorean triangle because the golden ratio is irrational.

However the right triangle (a,b,c) = (262353, 424496, 499025) is almost golden because b:a = 1.6180337:1 is almost the golden ratio.

Can you find a more golden right triangle than the one just given?

Update:

Sorry, the question is meant to be about integer sided right triangles. So it should read: can you find a Pythagorean triangle more golden than (a,b,c) = (262353, 424496, 499025)? In other words with ratio of legs closer to the golden ratio than 424496/262353 = 1.6180337.

2 Antworten

Relevanz
  • vor 6 Jahren
    Beste Antwort

    A right triagle with sides x - 1/x and 2 has hypotenuse x + 1/x (where x > 1).

    So we need to solve x - 1/x : 2 = (1 + √5)/2

    x - 1/x = 1 + √5

    x = (1+√5 + √(10 + 2√5)) / 2

    According to Wolfram Alpha, the continued fraction expansion of this is

    [3; 1, 1, 11, 1, 9, 1, 25, 1, 6, 3, 2, 3, 10, 24, 6, 133, 6, 1, 1, 3, 1, 1, 3, 12, ...]

    Letting x be the fraction generated by the first 2, 3, 4, ..., 10 of the numbers in this list,

    Then computing (x - 1/x)/2, we get

    15 / 8 ≈ 1

    45 / 28 ≈ 1.6

    3016 / 1863 ≈1.618

    7119 / 4400 ≈1.61

    700625 / 433008 ≈ 1.6180

    424496 / 262353 ≈ 1.618033

    569883075 / 352207108 ≈ 1.6180339

    614724165 / 379920428 ≈ 1.61803398

    29802502503 / 18418959496 ≈ 1.61803398

    Where (1 + sqrt(5))/2 = 1.618033988749894848204586834365638117720309179805762862135448...

    and the numerators and the denominators of the listed fractions are the sides of a Pythagorean triangle.

    Addendum

    Just for the heck of it, I let Mathematica compute

    x = FromContinuedFraction[{3,1,1,11,1 ,9,1,25,1,6, 3,2,3,10,24 ,6,133,6,1,1 ,3,1,1,3,12}]

    x = 4130493785701831 / 1173386725230941

    In which case,

    (x – 1/x)/2 = 7842071253386625780181726503540 / 4846666576791423668957241552971

    Which corresponds to the Pythagorean triangle

    (7842071253386625780181726503540,

    4846666576791423668957241552971,

    9218907660334817612551510249021)

    The difference between

    7842071253386625780181726503540 / 4846666576791423668957241552971

    And (1 + √5)/2 is

    1.598299 × 10^(-31)

  • vor 6 Jahren

    What is wrong with irrational side lengths? There is indeed a Golden right triangle. The sides are 1 and φ and the hypotenuse is √(φ² + 1)

    Edit: if you mean with integral sides you are correct. One can use the continued fraction representation of φ to get as close as one pleases to a golden triangle but with the trade off of increasingly large lengths.

Haben Sie noch Fragen? Jetzt beantworten lassen.