Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.
Can you find a more golden Pythagorean triangle?
Pythagorean triangle: a right triangle with integer side lengths.
Golden triangle: a right triangle whose legs are in the golden ratio.
Golden ratio: (1+√5)/2 : 1
There is no golden Pythagorean triangle because the golden ratio is irrational.
However the right triangle (a,b,c) = (262353, 424496, 499025) is almost golden because b:a = 1.6180337:1 is almost the golden ratio.
Can you find a more golden right triangle than the one just given?
Sorry, the question is meant to be about integer sided right triangles. So it should read: can you find a Pythagorean triangle more golden than (a,b,c) = (262353, 424496, 499025)? In other words with ratio of legs closer to the golden ratio than 424496/262353 = 1.6180337.
2 Antworten
- Pauley MorphLv 7vor 6 JahrenBeste Antwort
A right triagle with sides x - 1/x and 2 has hypotenuse x + 1/x (where x > 1).
So we need to solve x - 1/x : 2 = (1 + √5)/2
x - 1/x = 1 + √5
x = (1+√5 + √(10 + 2√5)) / 2
According to Wolfram Alpha, the continued fraction expansion of this is
[3; 1, 1, 11, 1, 9, 1, 25, 1, 6, 3, 2, 3, 10, 24, 6, 133, 6, 1, 1, 3, 1, 1, 3, 12, ...]
Letting x be the fraction generated by the first 2, 3, 4, ..., 10 of the numbers in this list,
Then computing (x - 1/x)/2, we get
15 / 8 ≈ 1
45 / 28 ≈ 1.6
3016 / 1863 ≈1.618
7119 / 4400 ≈1.61
700625 / 433008 ≈ 1.6180
424496 / 262353 ≈ 1.618033
569883075 / 352207108 ≈ 1.6180339
614724165 / 379920428 ≈ 1.61803398
29802502503 / 18418959496 ≈ 1.61803398
Where (1 + sqrt(5))/2 = 1.618033988749894848204586834365638117720309179805762862135448...
and the numerators and the denominators of the listed fractions are the sides of a Pythagorean triangle.
Addendum
Just for the heck of it, I let Mathematica compute
x = FromContinuedFraction[{3,1,1,11,1 ,9,1,25,1,6, 3,2,3,10,24 ,6,133,6,1,1 ,3,1,1,3,12}]
x = 4130493785701831 / 1173386725230941
In which case,
(x – 1/x)/2 = 7842071253386625780181726503540 / 4846666576791423668957241552971
Which corresponds to the Pythagorean triangle
(7842071253386625780181726503540,
4846666576791423668957241552971,
9218907660334817612551510249021)
The difference between
7842071253386625780181726503540 / 4846666576791423668957241552971
And (1 + √5)/2 is
1.598299 × 10^(-31)
- PolyhymnioLv 7vor 6 Jahren
What is wrong with irrational side lengths? There is indeed a Golden right triangle. The sides are 1 and φ and the hypotenuse is √(φ² + 1)
Edit: if you mean with integral sides you are correct. One can use the continued fraction representation of φ to get as close as one pleases to a golden triangle but with the trade off of increasingly large lengths.