Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.

Prove that as n -> ∞, this becomes Cos(x)?

Let k = 4n, where n = positive integer.

Let a = x + √(x² - k²) and b = x - √(x² - k²). Prove that as positive integer n -> ∞,

(1/2) (1/k^k) (a^k + b^k) -> Cos(x)

Check out plot of both functions for n = 10, a small number:

http://i254.photobucket.com/albums/hh120/Scythian1...

Update:

Eugene, fix your 3rd line, 4n = x/y, not x/4y

Update 2:

Eugene and Pauley Morph, both of your proofs reference the complex form of Cosine. But the neat thing about this expression (1/2) (1/k^k) (a^k + b^k) is that it yields a real polynomial with rational coefficients. And it can generate very accurate values of Cos(x) very fast even for "large" x > 0 values.

Update 3:

Indica, you fixed Pauley Morph's problem. He should have used θ = arcsin(x/k).

4 Antworten

Relevanz
  • Eugene
    Lv 7
    vor 7 Jahren
    Beste Antwort

    lim(n -> ∞) (1/2)(1/k^k) (a^k + b^k)

    = (1/2) lim(n -> ∞) [(a/k)^k + (b/k)^k]

    = (1/2) lim(n -> ∞) ([x/(4n) + √((x/4n)^2 - 1)]^(4n) + [x/(4n) - √((x/4n)^2 - 1)]^(4n))

    = (1/2) lim(y -> 0) ([y + √(y^2 - 1)]^(x/y)) + [y - √(y^2 - 1)]^(x/y))), letting y = x/(4n)

    = (1/2) lim(y -> 0) (exp{x • ln(y + √(y^2 - 1))/y} + exp{x • ln(y - √(y^2 - 1))/y})

    = (1/2) lim(y -> 0) (exp{x • ln(y + √(y^2 - 1)/y} + exp{-x • ln(y + √(y^2 - 1))/y})

    = (1/2) (exp{x • lim(y -> 0) ln(y + √(y^2 - 1)/y} + exp{-x • lim(y -> 0) ln(y + √(y^2 - 1)/y}

    = (1/2) (exp{x • lim(y -> 0) 1/√(y^2 - 1)} + exp{-x • lim(y -> 0) 1/√(y^2 - 1)}), by L'hospital's rule

    = (1/2) (exp{x • 1/i} + exp{-x • 1/i})

    = (1/2) (exp{-ix} + exp{ix})

    = cos(x).

    @Scythian thanks for spotting the mistake.

  • vor 7 Jahren

    Note that ab = k^2 where k = 4n is an even integer.

    So (1/2) (a^k + b^k)/k^k =

    (1/2) (a^k + b^k) / (ab)^(k/2) =

    (1/2) ((a/b)^(k/2) + (b/a)^(k/2))

    Since n, and therefore k, is going to approach infinity, we may

    as well write

    a = x + i√(k² - x²) and b = x - i√(k² - x²) with |a| = |b| = k

    Then we can assume that

    a = k exp(i θ) and b = k exp(-i θ)

    where θ = arccos(x/k) for large enough values of k.

    Then (1/2) (a^k + b^k)/k^k =

    (1/2) ((a/b)^(k/2) + (b/a)^(k/2)) =

    (1/2) (exp(i k θ) + exp(- i k θ)) =

    cos(k θ)

    I was doing great up to here and then things fell apart

  • Indica
    Lv 7
    vor 7 Jahren

    For large enough k let x/k=sin(α) so α→0 as k→∞

    Writing x={ sin(α)/α }{ kα } and taking limits as k→∞ gives x = 1*lim(kα) = lim(kα)

    From definitions of a & b, a/k=exp(i(π/2−α)) and b/k=exp(−i(π/2−α))

    ∴ ½( (a/k)ᵏ + (b/k)ᵏ ) = cos(k(π/2−α)) = cos(kα) since k is a multiple of 4

    lim cos(kα) = cos( lim(kα) ) = cos(x)

    If k=4n+1, 4n+2, 4n+3 the limit is sin(x), −cos(x),−sin(x)

  • Anonym
    vor 7 Jahren

    That's a pretty powerful function you have there.

Haben Sie noch Fragen? Jetzt beantworten lassen.