Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.
Prove that as n -> ∞, this becomes Cos(x)?
Let k = 4n, where n = positive integer.
Let a = x + √(x² - k²) and b = x - √(x² - k²). Prove that as positive integer n -> ∞,
(1/2) (1/k^k) (a^k + b^k) -> Cos(x)
Check out plot of both functions for n = 10, a small number:
Eugene, fix your 3rd line, 4n = x/y, not x/4y
Eugene and Pauley Morph, both of your proofs reference the complex form of Cosine. But the neat thing about this expression (1/2) (1/k^k) (a^k + b^k) is that it yields a real polynomial with rational coefficients. And it can generate very accurate values of Cos(x) very fast even for "large" x > 0 values.
Indica, you fixed Pauley Morph's problem. He should have used θ = arcsin(x/k).
4 Antworten
- EugeneLv 7vor 7 JahrenBeste Antwort
lim(n -> ∞) (1/2)(1/k^k) (a^k + b^k)
= (1/2) lim(n -> ∞) [(a/k)^k + (b/k)^k]
= (1/2) lim(n -> ∞) ([x/(4n) + √((x/4n)^2 - 1)]^(4n) + [x/(4n) - √((x/4n)^2 - 1)]^(4n))
= (1/2) lim(y -> 0) ([y + √(y^2 - 1)]^(x/y)) + [y - √(y^2 - 1)]^(x/y))), letting y = x/(4n)
= (1/2) lim(y -> 0) (exp{x • ln(y + √(y^2 - 1))/y} + exp{x • ln(y - √(y^2 - 1))/y})
= (1/2) lim(y -> 0) (exp{x • ln(y + √(y^2 - 1)/y} + exp{-x • ln(y + √(y^2 - 1))/y})
= (1/2) (exp{x • lim(y -> 0) ln(y + √(y^2 - 1)/y} + exp{-x • lim(y -> 0) ln(y + √(y^2 - 1)/y}
= (1/2) (exp{x • lim(y -> 0) 1/√(y^2 - 1)} + exp{-x • lim(y -> 0) 1/√(y^2 - 1)}), by L'hospital's rule
= (1/2) (exp{x • 1/i} + exp{-x • 1/i})
= (1/2) (exp{-ix} + exp{ix})
= cos(x).
@Scythian thanks for spotting the mistake.
- Pauley MorphLv 7vor 7 Jahren
Note that ab = k^2 where k = 4n is an even integer.
So (1/2) (a^k + b^k)/k^k =
(1/2) (a^k + b^k) / (ab)^(k/2) =
(1/2) ((a/b)^(k/2) + (b/a)^(k/2))
Since n, and therefore k, is going to approach infinity, we may
as well write
a = x + iâ(k² - x²) and b = x - iâ(k² - x²) with |a| = |b| = k
Then we can assume that
a = k exp(i θ) and b = k exp(-i θ)
where θ = arccos(x/k) for large enough values of k.
Then (1/2) (a^k + b^k)/k^k =
(1/2) ((a/b)^(k/2) + (b/a)^(k/2)) =
(1/2) (exp(i k θ) + exp(- i k θ)) =
cos(k θ)
I was doing great up to here and then things fell apart
- IndicaLv 7vor 7 Jahren
For large enough k let x/k=sin(α) so αâ0 as kââ
Writing x={ sin(α)/α }{ kα } and taking limits as kââ gives x = 1*lim(kα) = lim(kα)
From definitions of a & b, a/k=exp(i(Ï/2âα)) and b/k=exp(âi(Ï/2âα))
ⴠ½( (a/k)áµ + (b/k)áµ ) = cos(k(Ï/2âα)) = cos(kα) since k is a multiple of 4
lim cos(kα) = cos( lim(kα) ) = cos(x)
If k=4n+1, 4n+2, 4n+3 the limit is sin(x), âcos(x),âsin(x)
- Anonymvor 7 Jahren
That's a pretty powerful function you have there.