Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.

Prove that x - √(x² - 1) ≈ 1/2x for large x?

I'd like to see how this can easily be determined.

Update:

Eugene, d'oh! Why didn't I think of that?

Update 3:

Rita the Dog, yes, that's the series for large x, by finding the Maclauren for (1/x) - √((1/x)² - 1) for x = 0.

Update 4:

Anyway, I wasted too much time in coming around to this in answering your question about that x = Tan(x) series. I had just assumed falsely that this expression would be more like 1/x² instead of the correct 1/x. So I learned something.

3 Antworten

Relevanz
  • Eugene
    Lv 7
    vor 7 Jahren
    Beste Antwort

    Let f(x) = x - √(x^2 - 1) and g(x) = 1/(2x). We want to show lim(x -> ∞) f(x)/g(x) = 1.

    lim(x -> ∞) f(x)/g(x)

    = lim [x - √(x^2 - 1)]/(1/2x)

    = lim 2x/(x + √(x^2 - 1), by rationalizing the numerator

    = lim 2/(1 + √(1 - 1/x^2)) = 2/(1 + 1)

    = 1.

  • vor 7 Jahren

    For large x, x² is much larger than 1

    therefore x²–1 is the same as x²

    therefore we have

    x – √(x² – 1) ≈ x – √(x²) ≈ x – x ≈ 0

    so your premise is incorrect.

    try x = 1000

    x – √(x² – 1) = 1000 – √(1e6 – 1) = 1000 – √999999 = 1000 – 999.9995 = 0.0005

    or approximately 0 compared to 1000

    (1/2)x = 500 which is not close to 0.0005

    BUT wait, perhaps you mean ≈ 1/(2x) ??

    come back when you can be more specific.

  • vor 7 Jahren

    The series expansion is 1/2x + 1/8x^3 + 1/16x^5 + 5/128x^7 + ... but I´ll leave a real proof to someone else.

Haben Sie noch Fragen? Jetzt beantworten lassen.