Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.

Prove this geometric mean?

Given a and b, prove that for maximum angle Φ, c = √(ab) without using calculus. See diagram:

http://i254.photobucket.com/albums/hh120/Scythian1...

Update:

Yes, b is the entire segment. I should had made that more clear.

Update 2:

See revised diagram:

http://i254.photobucket.com/albums/hh120/Scythian1...

"b" is the entire vertical segment.

Update 3:

Quadrillerator, can you edit your answer, changing "a+b" to "b"?

1 Antwort

Relevanz
  • vor 8 Jahren
    Beste Antwort

    I've revised the 2nd paragraph to work with the lengths in the second image, per your request:

    First I observe that for positive x and N, x+N/x is minimized when x=√N.

    This is easy to see if we rewrite x+N/x = (√x - √N/√x)² + 2 and since the square term is not negative, the expression is minimzed when the square term is 0, which happens only for x=√N.

    Now I note that Φ = arctan(b/c) - arctan (a/c).

    Remembering that tan(x-y) = (tan(x) - tan(y)) / (1 + tan(x) tan(y)) gives

    tan (Φ) = (b/c - a/c) / (1 + ab/c²) = (a+b) / (c + ab/c),

    and since the tangent is an increasing function, it is maximized

    (and hence Φ is maximized) when the denominator in (a+b) / (c + ab/c)

    is minimized, which, by the prior paragraph, happens when c² = ab.

Haben Sie noch Fragen? Jetzt beantworten lassen.