Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.

I am having trouble these 2 problems in Geometry. PLEASE HELP!?

1. Indicate the equation of the given line in standard form.

The line with slope 9/7 and containing the midpoint of the segment whose endpoints are (2, -3) and (-6, 5).

2. Indicate the equation of the given line in standard form.

The line through the midpoint of and perpendicular to the segment joining points (1, 0) and (5, -2).

Thank you!!

1 Antwort

Relevanz
  • Steven
    Lv 7
    vor 8 Jahren
    Beste Antwort

    1. Indicate the equation of the given line in standard form.

    The line with slope 9/7 and containing the midpoint of the segment whose endpoints are (2, -3) and (-6, 5).

    slope is 9/7

    so you are going to start with

    y=9x/7

    the midpoint

    (x1+x2)/2,(y1+y2)/2

    for (2, -3) and (-6, 5)

    (2-6)/2,(-3+5)/2

    4/2,2/2

    (2,1)

    to get the line to pass through the point

    SUBTRACT the values from their relative variable

    y=9x/7

    (y-1)=9(x-2)/7

    y-1=9x/7-18/7

    y=9x/7-18/7+7/7

    y=9x/7-11/7

    that's slope intercept

    for standard

    x+y=c

    y=9x/7-11/7

    multiply through by 7

    get rid of the fractions

    [always]

    7y=9x-11

    -9x+7y= -11

    2. Indicate the equation of the given line in standard form.

    The line through the midpoint of and perpendicular to the segment joining points (1, 0) and (5, -2).

    perpendicular is the negative inverse of the reference line's slope

    so

    y=3/5

    would become

    y= -5/3

    but we have to find the slope first

    slope=m=rise over run=(y1-y2)/(x1-x2)

    for (1, 0) and (5, -2)

    (-2-0)/(5-1)

    -2/4

    -1/2

    so the perpendicular is

    2/1

    you start with

    y=2x

    through the midpoint

    (x1+x2)/2,(1+y2)/2

    (1+5)/2,(0-2)/2

    6/2,-2/2

    3,1

    SUBTRACT the values from their relative variables

    y=2x

    (y-1)=2(x-3)

    y-2=2x-6

    y=2x-4

    again, that is slope intercept form

    standard form:

    -2x+y= -4

Haben Sie noch Fragen? Jetzt beantworten lassen.