Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.

How do you find the center and radious of this equation?

Given the standard form of a circle (x - h)^2 + (y - k)^2 = r^2, find the center and radious of the equation:

x^2 + y^2 - 10x - 12y - 8 = 0

5 Antworten

Relevanz
  • vor 8 Jahren
    Beste Antwort

    In general form, the equation of a circle on its plane is

    x^2 + y^2 + ax + by + c = 0

    This can be written as

    (x + a/2)^2 + (y +b/2)^2 + c - (a^2)/4 - (b^2)/4 = 0

    (x + a/2)^2 + (y + b/2)^2 = (a^2 + b^2 - 4c)/4

    So, the center is at (-a/2, -b/2) and the radius is r = (sqrt(a^2 + b^2 - 4c))/2, provided a^2 + b^2 - 4c > 0. If it is 0, the circle reduces to its center.

    In your case, the center is at (5, 6) and the radius is sqrt(100 + 144 + 32)/2 = sqrt(276)/2 = sqrt(39)

  • vor 8 Jahren

    We have to complete the square... x^2 - 10x (add and subtract 25) y^2 -12y ( add and subtract 36)

    It is x^2 - 10x + 25 -25 y^2 -12y +36 -36 - 8 = 0 -->

    (x -5)^2 + (y -6)^2 = 69 ...

    In the standard form the center is (h,k) and the radius is sqrt(r^2)

    then, the center is (5,6) and the radius is r = sqrt(69) OK!

  • Ray
    Lv 7
    vor 8 Jahren

    You have do something called completing the square for both the "x"s and the "y"s:

    x² - 10x + 25 + y² - 12y + 36 - 8 = 25 + 36

    (x - 5)² + (y - 6)² -8 = 61

    (x - 5)² + (y - 6)² = 69

    Thus the coordinates of the centre are (5, 6) and the radius is √69.

  • ?
    Lv 7
    vor 8 Jahren

    x^2 + y^2 - 10x - 12y - 8 = 0

    x^2 + y^2 - 10x - 12y = 8

    Complete the square of x and y by adding 25 and 36 as shown below

    (x^2 - 10x +25)+(y^2- 12y+36) = 8+25+36

    (x-5)^2 +(y-6)^2 =69 = {sqrt(69)}^2

    Here h =5 and k =6 and r = sqrt(69)

    Hence centre are(5,6) and radius = sqrt(69).......................Ans

  • Wie finden Sie die Antworten? Melden Sie sich an, um über die Antwort abzustimmen.
  • vor 8 Jahren

    If the standard equation of the circle is x^2+y^2+2gx+2fy+c=0, then centre = (-g,-f) and radius = sqrt(g^2+f^2-c). Thus for your problem Centre = ( 5, 6) and radius = sqrt(69).

Haben Sie noch Fragen? Jetzt beantworten lassen.