Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.
Center of Mass of an ice cream cone using spherical coordinates?
Find the center of mass of an ice cream cone consisting of the region below the hemisphere x^2+y^2+z^2=9 z>=0 and above the cone x^2y^2=z^2 with the density being proportional to the distance from the origin.
2 Antworten
- kbLv 7vor 9 JahrenBeste Antwort
It suffices to find the center of mass of the region between
x^2 + y^2 + z^2 = 3^2 with z ≥ 0 and the cone x^2 + y^2 = z^2
(x^2 y^2 = z^2 must be a typo) with density δ(x,y,z) = k√(x^2 + y^2 + z^2).
Using spherical coordinates, note that
x^2 + y^2 + z^2 = 3^2 with z ≥ 0 ==> ρ = 3 with φ ≤ π/2
x^2 + y^2 = z^2 ==> ρ^2 sin φ = ρ^2 cos φ ==> φ = π/4
δ(x,y,z) = k√(x^2 + y^2 + z^2) = kρ
So, we have
m = ∫∫∫ δ(x,y,z) dV
....= ∫(θ = 0 to 2π) ∫(φ = 0 to π/4) ∫(ρ = 0 to 3) (kρ) * (ρ^2 sin φ dρ dφ dθ)
....= ∫(θ = 0 to 2π) dθ * ∫(φ = 0 to π/4) sin φ dφ * ∫(ρ = 0 to 3) kρ^3 dρ
....= 2π * (1 - √2/2) * 81k/4
....= (81πk/4) (2 - √2).
Myz = ∫∫∫ x * δ(x,y,z) dV
....= ∫(θ = 0 to 2π) ∫(φ = 0 to π/4) ∫(ρ = 0 to 3) (ρ cos θ sin φ) * (kρ) * (ρ^2 sin φ dρ dφ dθ)
....= ∫(θ = 0 to 2π) cos θ dθ * ∫(φ = 0 to π/4) ∫(ρ = 0 to 3) kρ^4 sin^2(φ) dρ dφ
....= 0.
Mxz = ∫∫∫ y * δ(x,y,z) dV
....= ∫(θ = 0 to 2π) ∫(φ = 0 to π/4) ∫(ρ = 0 to 3) (ρ cos φ) * (kρ) * (ρ^2 sin φ dρ dφ dθ)
....= ∫(θ = 0 to 2π) sin θ dθ * ∫(φ = 0 to π/4) ∫(ρ = 0 to 3) kρ^4 sin^2(φ) dρ dφ
....= 0.
Mxy = ∫∫∫ z * δ(x,y,z) dV
....= ∫(θ = 0 to 2π) ∫(φ = 0 to π/4) ∫(ρ = 0 to 3) (ρ sin θ sin φ) * (kρ) * (ρ^2 sin φ dρ dφ dθ)
....= ∫(θ = 0 to 2π) dθ * ∫(φ = 0 to π/4) sin φ cos φ dφ * ∫(ρ = 0 to 3) kρ^4 dρ
....= 2π * (1/2) sin^2(φ) {for φ = 0 to π/4} * 243k/5
....= 243πk/10
So, the center of mass equals (0, 0, (243πk/10)/((81πk/4) (2 - √2)))
= (0, 0, 6/(5(2 - √2))).
I hope this helps!
- ted sLv 7vor 9 Jahren
not a typical ice cream cone...rho in [ 0 , 3 ] , Î in [ 0 , 2Ï ] , and Φ in [ 0 , Ï / 4]
assuming the cone is really â ( x² + y² ) = z
cm = mass / volume..
mass is int of { a rho^3 sin Φ drho dΠdΦ } , where a = proportionality constant
volume is int of { rho² sin Φ drho dΠdΦ }