Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.
Center of Mass of a Hemisphere using Cylindrical coordinates.?
Use cylindrical coordinates to find the center of mass of a solid hemisphere with a radius of 5 if the density at any point it equal to 7 times the distance from its base. Assume the base lies flat on the xy plane.
3 Antworten
- kbLv 7vor 9 JahrenBeste Antwort
It suffices to find the center of mass of x^2 + y^2 + z^2 = 5^2 with z ≥ 0
with density δ(x,y,z) = 7z.
The equation of the upper hemisphere can be rewritten as z = √(25 - x^2 - y^2)
Via cylindrical coordinates, we have
m = ∫∫∫ δ(x,y,z) dV
....= ∫∫∫ 7z dV
....= ∫(θ = 0 to 2π) ∫(r = 0 to 5) ∫(z = 0 to √(25 - r^2)) 7z * (r dz dr dθ)
....= 2π ∫(r = 0 to 5) (7/2) rz^2 {for z = 0 to √(25 - r^2)} dr
....= 7π ∫(r = 0 to 5) (25r - r^3) dr
....= 7π (25r^2/2 - r^4/4) {for r = 0 to 5}
....= 4375π/4.
Myz = ∫∫∫ x * δ(x,y,z) dV
....= ∫∫∫ 7xz dV
....= ∫(θ = 0 to 2π) ∫(r = 0 to 5) ∫(z = 0 to √(25 - r^2)) 7(r cos θ) z * (r dz dr dθ)
....= ∫(θ = 0 to 2π) cos θ dθ * ∫(r = 0 to 5) ∫(z = 0 to √(25 - r^2)) 7r^2 z dz dr
....= 0.
Mxz = ∫∫∫ y * δ(x,y,z) dV
....= ∫∫∫ 7yz dV
....= ∫(θ = 0 to 2π) ∫(r = 0 to 5) ∫(z = 0 to √(25 - r^2)) 7(r sin θ) z * (r dz dr dθ)
....= ∫(θ = 0 to 2π) sin θ dθ * ∫(r = 0 to 5) ∫(z = 0 to √(25 - r^2)) 7r^2 z dz dr
....= 0.
Mxy = ∫∫∫ z * δ(x,y,z) dV
....= ∫∫∫ 7z^2 dV
....= ∫(θ = 0 to 2π) ∫(r = 0 to 5) ∫(z = 0 to √(25 - r^2)) 7z^2 * (r dz dr dθ)
....= 2π * ∫(r = 0 to 5) (7/3)rz^3 {for z = 0 to √(25 - r^2)} dr
....= (14π/3) * ∫(r = 0 to 5) r(25 - r^2)^(3/2) dr
....= (14π/3) * (-1/5)(25 - r^2)^(5/2) {for r = 0 to 5}
....= 8750π/3.
So, the center of mass equals
(0, 0, (8750π/3)/(4375π/4)) = (0, 0, 8/3).
I hope this helps!
- Anonymvor 6 Jahren
This Site Might Help You.
RE:
Center of Mass of a Hemisphere using Cylindrical coordinates.?
Use cylindrical coordinates to find the center of mass of a solid hemisphere with a radius of 5 if the density at any point it equal to 7 times the distance from its base. Assume the base lies flat on the xy plane.
Quelle(n): center mass hemisphere cylindrical coordinates: https://tr.im/xdXDh - IanLv 7vor 9 Jahren
Let H represent this hemisphere.
The distance from the base is z, so the density function is p(x,y,z) = 7z.
Note that if (x, y, z) is on the hemisphere, then so is (-x, y, z).
Furthermore, p(x, y, z) = p(-x, y, z).
So by symmetry of both the region and the density function, the x-coordinate of the center of mass is 0.
Note that if (x, y, z) is on the hemisphere, then so is (x, -y, z).
Furthermore, p(x, y, z) = p(x, -y, z).
So by symmetry of both the region and the density function, the y-coordinate of the center of mass is 0.
So we just need the z-coordinate of the center of mass.
The hemisphere H can be described by the inequalities
0 <= r <= 5, 0 <= theta <= 2pi, 0 <= z <= sqrt(25 - r^2).
z-coordinate of center of mass
= triple integral over H of zp(x,y,z) dV / triple integral over H of p(x,y,z) dV
= triple integral over H of 7z^2 dV / triple integral over H of 7z dV
= triple integral over H of z^2 dV / triple integral over H of z dV
= int 0 to 2pi int 0 to 5 int 0 to sqrt(25 - r^2) of rz^2 dz dr d theta /
int 0 to 2pi int 0 to 5 int 0 to sqrt(25 - r^2) of rz dz dr d theta
= int 0 to 2pi int 0 to 5 of (1/3)r(25 - r^2)^(3/2) dr d theta /
int 0 to 2pi int 0 to 5 of (1/2)r(25 - r^2) dr d theta
= int 0 to 2pi of [(-1/15)(25 - r^2)^(5/2) from r=0 to r=5] d theta /
int 0 to 2pi of [(1/2)(25r^2/2 - r^4/4) from r=0 to r=5] d theta
= int 0 to 2pi of (625/3) d theta / int 0 to 2pi of (625/8) d theta
= [2pi(625/3)] / [2pi(625/8)]
= 8/3.
The center of mass is (0, 0, 8/3).
Lord bless you today!