Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.
Simultaneous equation problem...?
If
a + b + c = (16)/1 = 16,
ab + bc + ac = 43,
abc = - 60 ,
then, what are the values of a, b, c ?
.
1 Antwort
- vor 1 JahrzehntBeste Antwort
Multiply the first equation by "a", and you get...
a^2 + ab + ac = 16a
Now, subtract the second equation to the new one, and you get
a^2 - bc = 16a - 43................(*)
From the third eq. we get
- bc = 60 /a, then, substituting this onto (*) we have
a^2 + 60/a = 16a - 43 or
a^3 - 16a^2 + 43a + 60 = 0...........(**)
We can find analogous expressions for b and c.
Obviously a = -1 is a solution to that equation, then (**) can be rewritten as:
(a+1) (a^2 -17a +60) = 0
Solving a^2 - 17a +60=0 for a, we get that the other solutions are a=12 and a =5... Then, (**) must be
(a+1) (a-5) (a-12) = 0.
Since you have the same kind of expressions for b and c, you get
(b+1) (b-5) (b-12) = 0.
(c+1) (c-5) (c-12) = 0.
So, a, b and c, must be different numbers from the set {-1, 5, 12}. Since the equations you provided are symmetric to a, b and c, this was to be expected.
(a,b,c) = (-1,5,12) , (-1, 12, 5) , (5, -1, 12) , (5, 12, -1), (12, -1, 5) and (12, 5, -1) are all the possible solutions.