Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.
Does anybody know the mean of log(x+c) if x is log-normally distributed and c is any constant?
X ~ log-N(mu, sigma), so log(x) is normally distributed with mean mu and variance sigma^2
But what´s about y=log(x+c) with the exp(y) following the so called shifted log-normal distribution? Is there any closed-form for the distribution of y? And more important: how can I calculate the mean of y?
Please help -- I have googled but could not find the answer. Hopefully I can get here an answer, if possible also with references. Thank you!!!
2 Antworten
- MorewoodLv 7vor 1 JahrzehntBeste Antwort
First, may we assume c≥0? Otherwise, "y" is undefined with positive probability...
The cumulative probability distribution for y would be:
Prob( Y<y ) = Prob ( Log(X+c)<y )
= Prob( X < Exp(y)-c )
...
= Prob ( (Log(X)-μ)/σ < ... ) , but Z=(Log(X)-μ)/σ is standard normal.
= Φ( ... ) , where Φ( ) is the standard normal cumulative distribution function.
To find the mean of Y, you want the probability density function, which is just the derivative:
Exp(-(...)²/2) / √(2π) × (d/dy)(...)
The mean of Y is the integral (from -∞ to ∞) of "y" times that:
(Mean of Y) = ∫ y × Exp(-(...)²/2) / √(2π) × (d/dy)(...) dy
which does NOT look nice to me! (Even with the obvious substitution: z= ... )
Quelle(n): If you have particular values of μ, σ, and c, you could compute that integral numerically: http://www.wolframalpha.com/input/?i=integral_-inf... (Just replace "mu", "sigma", and "c", and adjust the bounds if necessary.) [Edit: DO check my algebra! I had the wrong integral in here at first.] - elewaLv 4vor 4 Jahren
best way is to apply GDC. you receives the naswer right away. without using calculator, you've gotten to apply tables and word the cost of c resembling 0.seventy 2. it is going to likely be (x -4.2)/a million.03. Now artwork algebra backwards and locate X.