Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.
Who can help me solve this exercise?
The equation of a curve is y=ax^2-2bx+c, where a, b and c are constants with a>0.
(a) Find, in terms of a, b and c, the coordinates of the vertex of the curve.
(b) Given that the vertex of the curve lies on the line y=x, find an expression for c in terms of a and b. Show that in this case, whatever the value of b, c>-1/4a or c=-1/4a.
So the vertex is on (b/a, c-b^2/a) and c=b(b+1)/a. Any ideas about the last part?
I don't know why, can't select an answer as best answer :S
I don't know why, can't select an answer as best answer :S
1 Antwort
- falzoonLv 7vor 1 JahrzehntBeste Antwort
y = ax^2 - 2bx + c
Complete the square :
y =a[x^2 - (2b/a)x + c/a]
y = a[x^2 - (2b/a)x + b^2/a^2 + c/a - b^2/a^2]
y = a[(x - b/a)^2 + c/a - b^2/a^2]
y = a(x - b/a)^2 + c - b^2/a
This is now in vertex form, y = a(x - h)^2 + k, where vertex is (h, k),
so, vertex is at (b/a, c - b^2/a).
If vertex lies on y = x, then with x = b/a, we also have y = b/a.
Plugging these into the vertex equation gives :
b/a = a(b/a - b/a)^2 + c - b^2/a
b/a = c - b^2/a
c = b/a + b^2/a = b(b + 1)/a
Now, b(b + 1)/a = c
so, b(b + 1) = ac
or, b^2 + b - ac = 0
Solving for b using the quadratic formula gives :
b = [-1 ± √(1 + 4ac)]/2
For b to be real, term under the square root sign must be ≥ 0,
that is, 1 + 4ac ≥ 0, or c ≥ -1/(4a).