Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.

6. a cell phone company offers a contract for which the cost C, in dollars, of t minutes of telephoning?

is given by C=0.25(t-400)+47.95, where it is assumed that t>=400 minutes. What times will keep costs between $86.20 and $114.95?

23. solve and grapgh the compound inequity

2x-14<=-7 or x-6>=1

the solution of the compound inequality is {x|x<=__ or x>=__}?.

3 Antworten

Relevanz
  • vor 1 Jahrzehnt
    Beste Antwort

    0.25(t - 400) + 47.95 = 86.20

    0.25(t - 400) = 38.25

    t - 400 = 153

    t = 553

    0.25(t - 400) + 47.95 = 114.95

    0.25(t - 400) = 67

    t - 400 = 268

    t = 668

    Answer: 553 ≤ t ≤ 668 or Between 553 and 668

    -----------

    2x - 14 ≤ - 7

    2x ≤ 7

    x ≤ 7/2 or 7/2 ≥ x

    x - 6 ≥ 1

    x ≥ 7

    Answer: 7/2 ≥ x ≥ 7???????

  • vor 1 Jahrzehnt

    C=0.25(t-400)+47.95

    86.20 = 0.25(t-400)+47.95

    (86.20 - 47.95)/.25 = t - 400

    t = (86.20 - 47.95)/.25 + 400

    = 553 mins

    114.95 = 0.25(t-400)+47.95

    (114.95 - 47.95)/.25 = t -400

    t = (114.95 - 47.95)/.25 + 400

    = 668 mins

    23) 2x -14 <= -7

    2x<= -7 +14

    2x <- 7

    x <- 7/2

    x -6 >= 1

    x >= 7

    {x|x<= -7/2 or x>= 7}

    Graph the compound inequality gives two regions to the left an equal to -7/2 and to the right or equal

    to 7.

  • vor 1 Jahrzehnt

    For the first one, just set C = to the wanted costs:

    86.20 = 0.25(t-400)+47.95 and 114.95 = 0.25(t-400)+47.95

    and solve for t. Give the answer like this: (minutes for first part) <= t <= (minutes for last part). I'll let you put it in the calculator!

    For the second one,

    2x - 14 <= -7

    2x <= -21

    x<= -21/2

    x- 6 >= 1

    x >= 7

    Therefore, {x|x<= -21/2 or x>= 7}

Haben Sie noch Fragen? Jetzt beantworten lassen.