Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.
The perimeter of an isosceles right triangle is 16 + 16√2. Whats the length of the hypotenuse?
Answer options:
a. 8
b. 16
c. 4√2
d. 8√2
Please explain so I can understand how you know the answer. Thanks
e. 16√2
6 Antworten
- Anonymvor 1 JahrzehntBeste Antwort
By definition, an isosceles right triangle has two legs of the same length. If we let x denote the first leg and x denote the second, we get:
x^2 + x^2 = c^2 (the hypotenuse)
==> c^2 = 2x^2
==> c = x√2
Since the perimeter is 16 + 16√2:
x + x + x√2 = 16 + 16√2
==> (2 + √2)x = 16 + 16√2
==> x = (16 + 16√2)/(2 + √2)
==> x = 8√2
Therefore, the length of the hypotenuse is x√2 = (8√2)(√2) = 16 (Answer B).
I hope this helps!
- ?Lv 4vor 5 Jahren
If hypotenuse length is h then legs are (h√2)/2 Perimeter is h +h√2 = h(1+√2) For what is necessary DE the mid segment
- KrishnamurthyLv 7vor 1 Jahrzehnt
Let the hypotenuse be represnted as h and the equal sides as s
2s + h (that is the perimeter) = 16 + 16√2.
2s^2 = h^2
h^2/s^2 = 2
h/s = √2
h = s√2
2s + s√2 = 16 + 16√2
s(2 + √2) = 16 + 16√2
s = (16 + 16√2)/(2 + 2√2)
h = s√2 = √2 (16 + 16√2)/(2 + 2√2)
h = (16√2 + 16)/(2 + 2√2)
h = 16(√2 + 1)/2(1 + √2)
h = 8(1 + √2)/(1 + √2) = 8
Correct answer option:
a. 8
- Wie finden Sie die Antworten? Melden Sie sich an, um über die Antwort abzustimmen.
- GridLv 7vor 1 Jahrzehnt
An isosceles right triangle is a 45-45-90 Triangle.
There are several ratios involved when dealing with these
Side opposite the 45 is a
and the hypotenuse is a sqrt 2
Thus if the legs are 8 then the hypotenuse is 8 sqrt 2
If the legs are 8 sqrt 2 then the hypotenuse is (8 sqrt 2) (sqrt 2) = 16; which is the answer in this case
B.16