Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.

Meg fragte in Science & MathematicsMathematics · vor 1 Jahrzehnt

Two calculus questions: Euler's Rule and integration?

1)

dx/dy=x(y^2)

where y(0)=1 and change in x=1

Estimate y(2)

2.

Integral of (1/(3x-2)) from 1 to 0

Thanks.

2 Antworten

Relevanz
  • Anonym
    vor 1 Jahrzehnt
    Beste Antwort
  • Anonym
    vor 1 Jahrzehnt

    First, you'd divide by dx to move it to the right side, and divide by y squared to move it to the left side. Now, you should have:

    dy/(y^2) = x/dx

    Plug that into your 89 and integrate. Plug in 0 for your x, and solve for your constant, C, so that y(0) = 1. Once you've solved for C, solve for y(2).

    The integral of (3x-2)^-1 from 1 to 0 is going to need U substitution.

    Let u = 3x-2, and derive so that dx = du/3.

    Since this integral is a definite integral, you are going to have to change you limits with respect to x, to limits with respect to u.

    When x =1, u = 3(1) -2 = 1

    When x = 0, u = 3(0) - 2 = -2

    Your new limits are now from -2 to 1

    Now, you should have:

    Integral of u^-1 (du/3) from -2 to 1

    The integral of anything to the -1 power is going to be Ln(anything). Don't forget to pull out the constant 1/3.

    So, this is what you should get:

    (1/3)Ln(u) from -2 to 1

    Plug in u

    (1/3)Ln(3x-2) from -2 to 1

    And solve :)

    Quelle(n): calculus ap class
Haben Sie noch Fragen? Jetzt beantworten lassen.