Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.
Mathe- BITTE UM HILFE?
Ich hab eine Aufgabe in Mathe auf bekommen und muss sie morgen präsentieren ich hab schwierigkeiten denn: Von einem gleichschenkligen Dreieck ABC sind alpha und beta 65 grad gegeben und der Flächeninhalt 11.5 quadratzentimeter und die basis AB sollen wir raus bekommen also wie lang sie ist ... aber ich muss zuerst die höhe berechen und da hab ich keine ahnung wie ich das machen soll in büchern finde ich nicht die höhenberechnung am gleichschenkligen Dreieck . Ich habe aber extreme schwierigkeiten und mit dem sinus satz kann ich das ja nicht machen solange nur die winkel gegeben sind und keine seite bitte um jede hilfe danke im voraus ihr lieben
ich versteh das alles nich bin so dumm.. ich versuch alles um das zu verstehen wie soll ich morgen da stezhen :S
3 Antworten
- matherwigLv 6vor 1 JahrzehntBeste Antwort
Teile das Dreieck durch die Höhe in 2 rechtwinkelige Dreiecke:
Dann gilt: tan(alpha) = h/(c/2) = 2h/c
=> c = 2h/tan(alpha)
Setze ich dieses c nun in die Flächenformel ein, dann erhalte ich:
A = c*h/2 = 2h/tan(alpha)*h/2 = h²/tan(alpha)
=> h² = A*tan(alpha) => h
- vor 1 Jahrzehnt
hm, ich weià nicht, ob das richtig ist da ich schon lange aus der schule bin, aber ich hätte einen vorschlag:
bist du sicher, dass du zuerst die Höhe berechnen musst?
Da alpha und beta 65grad sind, muss gamma 50 betragen (180-65-65). Die Formel zur Berechnung des Flächeninhaltes eines Dreiecks lautet A=(a*b*sinus von gamma)/2, d.h. zwei aneinanderliegende Seiten mal dem dazwischenliegenden Winkel durch zwei. Hier sind zwei Seiten ja gleich (gleichschenklig) und deshalb können wir sagen A=(a²*sin50)/2.
Für A setzt du 11,5 ein, formst das ganze um und kommst auf a (bei mir ca. 8,66).
Dann kannst du normal mit Sinussatz weitermachen 8,66/sin65=c/sin50. Und für c (also die Strecke AB) kommt bei mir 7,32 heraus.
Ich hoffe, das hilft dir weiter.
Quelle(n): gedächtnis - vor 1 Jahrzehnt
Da man das hier nicht mathematisch darstellen kann:
http://www.mathematik.ch/klasse2/Hoehe_im_gleichsc...
Hoffentlich hilfts
PS: Gamma = 50°