Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.
A very sadistic geometry question?
Warning: Not for the faint of heart.
I have a right triangle with a hypotenuse of length 4. I connect the triangle's incenter, hypotenuse midpoint, and right-angled vertex with three line segments, forming a smaller triangle within the main triangle.
What is the smallest of the three angles of the main triangle when the smaller triangle's area is maximized? Additionally, what is the maximized area of this smaller triangle?
It is around 20 degrees, but I'm looking for exact algebraic solutions.
2 Antworten
- Dr DLv 7vor 1 JahrzehntBeste Antwort
Let's label the triangle A, B, C with A being the right angle.
D = incenter
E = midpoint of BC
angle ABC = θ
BC = 4, BE = CE = 2
AD = r√2
AE = 2
where r = radius of incircle
angle EAD = 45 - θ
So far area of EAD = 1/2 * AD * AE * sin(EAD)
= r*(cosθ - sinθ)
Let F be the point along AC where the incircle intersects AC.
Triangle DFC is right angled, such that
angle DCF = 45 - θ/2
DF = r, CF = 4sinθ - r
r / (4sinθ - r) = tan(45-θ/2) = (1 - tanθ/2) / (1+tanθ/2)
From this
r = 2 sinθ * (1 - tanθ/2)
and area
A = 2sinθ*(cosθ - sinθ) * (1 - tanθ/2)
Now we need to set dA/dθ = 0 and solve.
At this point, there is a way to simplify the half angle part.
tan(x) = 2tan(x/2) / (1 - tan^2 (x/2))
From this we can obtain
tan(x/2) = (1 - cosx) / sinx
1 - tan(x/2) = (sinx + cosx - 1) / sinx
Now A = 2*(cos2θ + sinθ - cosθ)
dA/dθ = 2*(-2sin2θ + cosθ + sinθ) = 0
Of course you could set y = sinθ, then end up with a quartic equation in y. But I'm looking for another trick that can help us solve this. So far no luck. A numerical solution yields θ = 19.91 degrees.
The quartic equation in y = sinθ is
16y^4 - 8y^3 - 14y^2 + 8y - 1 = 0
*EDIT*
OK thanks to Duke for a little help on this one.
cosθ + sinθ = 2sin2θ
(cosθ + sinθ)^2 = 4(sin2θ)^2
1 + sin2θ = 4(sin2θ)^2
sin2θ = (1 + √17)/8
θ = (1/2)*arcsin[(1 + √17)/8]
- Mugen is StrongLv 7vor 1 Jahrzehnt
let the hypotenuse lie on x-axis, from (0,0) to (4,0).
also the smallest angle be x, situated at (4,0).
right-angled vertex, RAV's coordinate
= ((4/2)(1-cos2x) , (4/2)sin2x)
= (2-2cos2x , 2sin2x)
side opposite (0,0)'s length
= 4cosx
side opposite (4,0)'s length
= 4sinx
incenter's coordinate
= ([4*4sinx+4(2-2cos2x)]/[4(sinx+cosx+1)] , [4*2sin2x]/[4(sinx+cosx+1)])
= ([4sinx+2-2cos2x)]/[sinx+cosx+1] , [2sin2x]/[sinx+cosx+1])
= (4sinx(sinx+1)/[sinx+cosx+1] , 4sinx(cosx)/[sinx+cosx+1])