Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.

what?
Lv 7
what? fragte in Science & MathematicsMathematics · vor 1 Jahrzehnt

i need to maximize the volume of this box.?

i start out with a 26 X 16 piece of carboard. equal squares are cut off each corner and the sides are turned up to form an open rectangular box.

i took calculus a while ago, and i pretty much forgot everything and i wanted to know how to go about this problem.

4 Antworten

Relevanz
  • vor 1 Jahrzehnt
    Beste Antwort

    Okay, let x = the side of those squares cut out at the corners, so that the cardboard can be folded up to the open top box. From this, we can figure out the length and width of the box as follows:

    L = 26 - 2x

    W = 16 - 2x

    The volume is the product of all three, or:

    V = x(26 - 2x)(16 - 2x) = 4 x³ - 84 x² + 416 x

    To find the maximum, we set dV/dx = 0, or

    12 x² -168 x + 416 = 0

    The roots are

    x = (1/3)(21 - √129) and (1/3)(21 + √129), or

    x = 3.214 and 10.786

    But only 3.214 is possible as a real solution, as 10.786 will result in "negative lengths".

  • vor 1 Jahrzehnt

    Call the size of the squares, "A".

    The corner cuts are A by A

    The sides of the box are then

    26 - 2A

    A

    16-2A

    Multiply these 3 terms together, that's the volume.

    To find the maximum volume, differentiate and set to zero.

    Then solve the quadratic for A.

    That will be the point were any change in A will make the volume smaller.

  • vor 1 Jahrzehnt

    length = 26-x

    width = 16-x

    height = x

    then Volume = (26-x)(16-x)x

    multiply out.

    Take the first derivative and set it = 0.

    Should give you maxima/minima. Test the x values to see.

  • vor 1 Jahrzehnt

    I don't have a calculator on me, but I believe the squares that you cut out should be (square root of 14) inches on a side, although I've been wrong before.

Haben Sie noch Fragen? Jetzt beantworten lassen.