Zerfallskonstante und Halbwertszeit - k immer negativ?

Hi,

ausgehend von folgenden Formeln:

Zerfallskonstante: k=ln(1-p/100)
Halbwertszeit: T=-ln(2)/k

Ich habe jetzt folgende Aufgabe gerechnet:
Radium hat eine Halbwertszeit von 1620 Jahren, berechne "k", "p" und den Zeitpunkt wann nur noch 1% des Soffes übrig ist.

um k auszurechenn:
T= -ln(2)/k=1620
k= -0,000427869

um p auszurechnen:
k=ln(1-p/100)= -0,000427869
p=0,042%

wann ist nur noch 1% übrig:
f(t)=e^ -0,000427869*t=0,01
t=10763

Nach der Lösung sind alle meine Ergebnisse richtig, außer dass mein "k" negativ ist.
Ich hab gedacht ich hätte einen Vorzeichenfehler gemacht und alles nochmal mit einem "positiven" k ausgerechnet. Jetzt waren mein "p" und das Endergebnis aber beide negativ.
Muss "k" nicht immer negativ sein bei einer Zerfallsfunktion?

In den nächsten beiden Aufgaben war k gegeben und man musste die anderen Werte errechnen. Das gegebene "k" war durchweg positiv, demnach hatte ich alle anderen Werte negativ raus.
Wo liegt mein Fehler? O.o

Zac Z2011-04-26T08:10:04Z

Beste Antwort

Ich habe die Aufgabe gemäß deinen Angaben nachgerechnet und bekomme genau dieselben Ergebnisse.

Allerdings benutzt du modifizierte Formeln; da, wo normalerweise die Zerfallskonstante λ steht, benutzt du -k bzw. da, wo normal -λ steht, hast du dann +k stehen. Dein k ist also die negative Zerfallskonstante! ;-)
Die Halbwertszeit ist z.B. ln(2)/λ; du benutzt aber ln(2)/(-k); usw.

Die echte Zerfallskonstante λ ist immer positiv (sonst würden die Kerne nicht zerfallen, sondern sich sogar neue bilden!), deine modifizierte Konstante k=-λ ist demnach immer negativ.

Schau dir diesbezüglich auch mal die Formeln hier an, so kenne ich die auch: http://de.wikipedia.org/wiki/Zerfallsgesetz

Fazit: in deiner Rechnung ist kein Fehler, sondern in deinen Formeln bzw. der Interpretation derselben (k ist eben nicht die Zerfallskonstante, sondern deren negativer Wert).


Gruß,
Zac