Yahoo Clever wird am 4. Mai 2021 (Eastern Time, Zeitzone US-Ostküste) eingestellt. Ab dem 20. April 2021 (Eastern Time) ist die Website von Yahoo Clever nur noch im reinen Lesemodus verfügbar. Andere Yahoo Produkte oder Dienste oder Ihr Yahoo Account sind von diesen Änderungen nicht betroffen. Auf dieser Hilfeseite finden Sie weitere Informationen zur Einstellung von Yahoo Clever und dazu, wie Sie Ihre Daten herunterladen.

aclotm
Vector and Gradient Fields?
Let F(x,y,z) = (3x+z^3, 4x+3y, z) be a vector field. Can F be a gradient field (i.e. F= -(nabla)V for some V(x,y,z).
So I know that something is a gradient field if the curl (i.e. (nabla)x(nabla f) = 0, but I don't know how to decide whether it is for some V?
1 AntwortMathematicsvor 1 JahrzehntFinding extrema using Lagrange Multipliers with two constraints?
f(x,y) = x + y subject to x^2 + y^2 + z^2 = 1, y + z = 1
I'm having some trouble solving for the five equations with five unknowns. I'm stuck right now with x = y-z (using lambda = 1/(2x)) and y + z = 1 (given). I'm not sure how to get a third equation...help!
1 AntwortMathematicsvor 1 Jahrzehntdiscrete math - bijection of compositions?
f:A->B and g:B->C, g o f is a bijection. Prove:
1. f:A->B is an injection, and
2. g:B->C is a surjection
Any ideas? I understand proving if the composition is injective/surjective given the maps, but not the other way around
2 AntwortenMathematicsvor 1 JahrzehntLagrange Multipliers?
Using Lagrange multipliers find the extrema:
1) f(x,y)=x^2-xy+y^2 subject to the constraint of x^2-y^2=1
2) f(x,y,z)=x^2-2y+2z^2 subject to the constraint of x^2+y^2+z^2=1
2 AntwortenMathematicsvor 1 Jahrzehnt